

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 5351-5353

Tetrahedron Letters

BF₃·Et₂O-induced Beckmann rearrangement of 23-hydroxyiminosapogenins. A shortcut to bisnorcholanic lactones

Martín A. Iglesias-Arteaga* and Angel A. Alvarado-Nuño

Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México DF, Mexico

> Received 22 April 2006; revised 16 May 2006; accepted 17 May 2006 Available online 9 June 2006

Abstract—Treatment of 23-hydroxyiminosapogenins with $BF_3 \cdot Et_2O$ in acetic acid produced good yields of the corresponding bisnorcholanic lactones as the sole products.

© 2006 Elsevier Ltd. All rights reserved.

23,24-Bisnorcholanic acid $22\rightarrow 16$ lactones or bisnorcholanic lactones (BNLs) have been isolated from natural sources.¹ In particular, vespertilin (1) has shown antipyretic and anticarcinogenic activities.² This class of compounds may be considered as useful starting materials in steroid partial synthesis (i.e., vespertilin (1) has been transformed into BNLs with weak plant growth promoting activity).³ In addition, the presence of the lactone moiety adds potential utility to BNLs (see Fig. 1).

BNLs may be also obtained as by-products on different reactions of steroid sapogenins.⁴ Several multi-step approaches to BNLs have been reported⁵ but despite all the cumulated work, the low availability of BNLs in both the synthetic and the natural domains limits their applicability.

Figure 1.

0040-4039/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.05.118

We have recently found that treatment of 23-hydroxyiminodiosgenin acetate (2) with POCl₃ in pyridine produces a mixture of the nitriles **3** and **3b** together with a small amount of vespertilin acetate (4) due to an abnormal Beckmann rearrangement (Scheme 1).⁶

According to our proposal of mechanism,⁶ nitrile **3a** arises from a nucleophilic attack (Nu = chloride anion) to C-16 from the α side, meanwhile **3b** is produced due to hydrolysis of oxonium I. Occurrence of vespertilin acetate (4) may be justified by both hydrolysis of the oxonium I and nucleophilic attack (Nu = chloride anion) to C-1' (Scheme 1).

Examination of molecular models of I (Fig. 2) indicates that while the nucleophilic attack of chloride to the α side of C-16 should not be appreciably hindered due to its small anionic radius, similar approach of a bulky nucleophile (i.e., acetic acid) should be less probable, leaving the nucleophilic attack to C-1', that leads to the BNLs, as the unique possibility of reaction (see Scheme 2).

With this analysis, we envisaged the $BF_3 \cdot Et_2O$ -induced Beckmann rearrangement of 23-hydroxyiminosapogenins in acetic acid as an alternative for the synthesis of BNLs.

Treatment of the oximes 2^6 or 5 in glacial acetic acid with BF₃·Et₂O at room temperature for 48 h produced the corresponding BNLs as the sole product. No product of nucleophilic attack of acetic acid to C-16 was observed (Nu = acetic acid or acetate anion).

^{*}Corresponding author. Tel.: +52 55 56227304; fax: +52 55 56227322; e-mail: martin.iglesias@servidor.unam.mx

Scheme 1. POCl₃-induced Beckmann rearrangement of 23-hydroxyiminodiosgenin acetate (2).

Figure 2. PM3 optimized geometry of oxonium I.⁷

23-Hydroxyiminotigogenin acetate (5). Mp 258–259 °C desc. (from ethyl acetate/hexane). ¹H NMR (400 MHz, *CDCl*₃) δ ppm 4.68 (m, 1H, H-3), 4.46 (dd, J = 7.4, 15.3 Hz, 1H, H-16), 3.61 (dd, 1H, J = 11.1, 11.1 Hz, H-26_{ax.}), 3.53 (dd, J = 3.3, 10.6 Hz, 1H, H-26_{eq.}), 3.32 (dd, J = 2.1, 13.8 Hz, H-24_{ea}), 2.81 (dddd, J = 6.8, 6.8, 6.8, 6.8 Hz, 1H, H-20) 2.02 (s, 3H, CH₃ acetyl), 0.98 (d, J = 6.9 Hz, 3H, H-21), 0.90 (d, J = 6.5 Hz, 3H, H-27), 0.83 (s, 3H, H-19), 0.79 (s, 3H, H-18). ¹³C NMR (100 MHz) δ ppm 36.67 C-1, 27.41 C-2, 73.67 C-3, 33.95 C-4, 44.59 C-5, 28.42 C-6, 32.12 C-7, 35.00 C-8, 54.17 C-9, 35.94 C-10, 20.36 C-11, 39.96 C-12, 40.91 C-13, 56.21 C-14, 31.81 C-15, 81.53 C-16, 61.21 C-17, 16.46 C-18, 12.22 C-19, 35.96 C-20, 14.38 C-21, 108.57 C-22, 154.68 C-23, 28.23 C-24, 31.54 C-25, 65.70 C-26, 16.97 C-27, 170.77 C=O acetyl, 21.43 CH₃ acetyl.

Typical procedure for the $BF_3 \cdot Et_2O$ -induced Beckmann rearrangement of 23-hydroxyiminosapogenins: $BF_3 \cdot Et_2O$ (0.5 ml) was added to a solution of the oxime (1 mmol) in glacial acetic acid (10 ml). The mixture was stirred for 48 h and diluted with saturated NaCl solution, the corresponding solid lactone was filtered and washed with water.

Vespertilin acetate (4). Yield 84%. Mp 225–228 °C (from ethyl acetate/hexane), lit.^{1a} 218–219.5 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 5.35 (d, J = 5.07 Hz, 1H, H-6), 4.94 (dt, J = 7.78, 7.76, 4.66 Hz, 1H, H-16), 4.58 (ddt, J = 10.38, 10.38, 6.29, 4.19 Hz, 1H, H-3), 2.62–2.52 (m, 1H, H-20), 2.02 (s, 3H, CH₃ acetyl), 1.30 (d, J = 7.63 Hz, 3H, CH₃-21), 1.02 (s, 3H, CH₃-19), 0.75 (s, 3H, CH₃-18). ¹³C NMR (100 MHz) δ ppm 36.77 C-1, 27.61 C-2, 73.66 C-3, 37.95 C-4, 139.73 C-5, 121.87 C-6, 31.80 C-7, 31.12 C-8, 49.90 C-9, 36.59 C-10, 20.22 C-11, 38.06 C-12, 41.37 C-13, 54.64 C-14, 33.02 C-15, 82.67 C-16, 58.82 C-17, 13.65 C-18, 19.26 C-19, 35.97 C-20, 17.95 C-21, 181.32 C-22, 170.53 C=O acetyl, 21.38 CH₃ acetyl.

5α-Dihydrovespertilin acetate (6). Yield 77.3%. Mp 224– 225 °C (from ethyl acetate/hexane), lit.^{1a} 222–224 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 4.92 (dt, J = 7.77, 7.76, 4.63 Hz, 1H, H-16), 4.71–4.61 (m, 1H, H-3), 2.56 (q, J = 7.67, 7.58, 7.58 Hz, 1H, H-20), 2.24 (q, J = 7.77,7.76, 7.58 Hz, 1H), 2.00 (s, 3H CH₃ acetyl), 1.29 (d, J = 7.58 Hz, 3H, CH₃-21), 0.82 (s, 3H, CH₃-19), 0.72 (s, 3H, CH₃-18). ¹³C NMR (100 MHz) δ ppm 36.62 C-1, 27.32 C-2, 73.45 C-3, 33.83 C-4, 44.52 C-5, 28.22

Scheme 2. Synthesis of BNLs by BF₃·Et₂O-induced Beckmann rearrangement of 23-hydroxyimnosapogenins.

C-6, 31.99 C-7, 34.77 C-8, 54.16 C-9, 35.50 C-10, 20.42 C-11, 38.21 C-12, 41.66 C-13, 54.44 C-14, 32.92 C-15, 82.72 C-16, 58.96 C-17, 13.81 C-18, 12.17 C-19, 36.03 C-20, 17.93 C-21, 181.34 C-22, 170.67 C=O acetyl, 21.41 CH₃ acetyl.

In summary, we have been able to find a different course for our previously reported abnormal Beckmann rearrangement of 23-hydroxyiminosapogenins. In the described conditions the BNLs become the sole reaction product.

Vespertilin acetate (**4**) and 5α -dihydrovespertilin acetate (**6**) were previously prepared by Sato from the corresponding spirosolanes following lengthy protocols.^{5a-c} Alternatively, the previously described treatment of tigogenin acetate (**7**) with fuming HNO₃ to produce 5α -dihydrovespertilin acetate (**6**) in low yield (Eq. 1) is not applicable to the synthesis of vespertilin acetate (**4**) from diosgenin acetate (**8**) due to the reactivity of the C5–C6 double bond that leads to the introduction of a nitro group at C-6 (Eq. 2).^{4e}

The herein described method constitutes an useful alternative for the synthesis of vespertilin acetate (2) and other bisnorcholanic lactones.

Acknowledgments

Thanks are due to Dirección General de Asuntos del Personal Académico (DGAPA-UNAM) for support via project IN200105 and Professor Benjamin Ruiz Loyola (UNAM) for laboratory facilities provided. We are indebted to Rosa I. del Villar Morales and Georgina Duarte Lisci (USAI-UNAM) for registering all NMR and Mass spectra and to Professor José M. Mendez-Stivalet (UNAM) for revision of the manuscript.

References and notes

- (a) González, A. G.; García, C.; Freire, R.; Suárez, E. An. Quim. 1971, 67, 433–439; (b) Ahmad, V. U.; Khaliq-uz-Zaman, S. M.; Shameel, S.; Perveen, S.; Ali, Z. Phytochemistry 1998, 50, 481–484; (c) Zheng, Q. A.; Zhang, Y. J.; Li, H. Z.; Yang, C. R. Steroids 2004, 69, 111–119.
- González, A. G.; Darias, V.; Suarez, M. C.; Janssen, K. *Il Farmaco Ed. Sci.* 1983, 38, 3–8.
- (a) Mola-Garate, J. L.; C. de Magalhaes, G.; S.-Romeiro, L. A. *Quim. Nova* 1998, *21*, 726–730; (b) Mola-Gárate, J. L.; Suárez-García, L.; Pérez-Martínez, C. S.; Iglesias-Arteaga, M. A.; Coll-Herrera, D.; Coll-Manchado, F. *Synth. Commun.* 2003, *33*, 1203–1209.
- 4. (a) Marker, R. E.; Rohrmann, E. J. Am. Chem. Soc. 1940, 62, 76-78; (b) Marker, R. E.; Rohrmann, E. J. Am. Chem. Soc. 1940, 62, 518-520; (c) Marker, R. E.; Shabica, A. J. Am. Chem. Soc. 1942, 64, 813-816; (d) Corcoran, J. W.; Hirschmann, H. J. Am. Chem. Soc. 1956, 78, 2325-2330; (e) Anagnostopoulos, C. E.; Fieser, L. F. J. Am. Chem. Soc. 1954, 76, 532-536; (f) Barton, D. H. R.; Sammes, P. G.; Taylor, M. V.; Werstiuk, E. J. Chem. Soc. (C) 1970, 1977-1981; (g) Morzycki, J. W.; Jastrzebska, I. Tetrahedron Lett. 2001, 42, 5989-5991; (h) Anulewicz-Ostrowska, R.; Morzycki, J. W.; Jastrzebska, I.; Wojcik, J. J. Org. Chem. 2002, 67, 6916-6924; (i) Jastrzebska, I.; Morzycki, J. W.; Trochimowicz, U. Tetrahedron Lett. 2004, 45, 1929-1932; (j) Jastrzêbska, I.; Morzycki, J. W. Pol. J. Chem. 2005, 79, 1245-1248; (k) Iglesias-Arteaga, M. A.; Velazquez-Huerta, G. A.; Mendez-Stivalet, J. M.; Galano, A.; Alvarez-Idaboy, R. Arkivoc 2005, VI, 109-126.
- (a) Sato, Y.; Ikekawa, N. J. Org. Chem. 1960, 25, 786–789;
 (b) Sato, Y.; Ikekawa, N. J. Org. Chem. 1960, 25, 789–791;
 (c) Sato, Y.; Ikekawa, N. J. Org. Chem. 1961, 26, 5058–5061;
 (d) Meza-Reyes, S.; Sandoval-Ramírez, S.; Montiel-Smith, S.; Hernández-Linares, G.; Viñas-Bravo, O.; Martínez-Pascual, R.; Fernández-Herrera, M. A.; Vega-Báez, J. L.; Merino-Montiel, P.; Santillán, R. L.; Farfán, N.; Rincón, S.; del Río, R. E. Arkivoc 2005, VI, 307–320.
- Iglesias-Arteaga, M. A.; Sandoval-Ramirez, J.; Mata-Esma, M. Y.; Viñas-Bravo, O.; Bernès, S. *Tetrahedron Lett.* 2004, 45, 4921–4926.
- (a) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209–220; (b) Stewart, J. J. P. MOPAC 6.00, QCPE 455, 1990.